THE UNIVERSITYW

Overview of the BOUT++
code structure

Ben Dudson
York Plasma Institute, University of York, UK

benjamin.dudson@york.ac.uk

3" September 2013

mailto:benjamin.dudson@york.ac.uk

BOUT++

® A toolbox for solving PDEs on parallel computers, together
with pre- and post-processing codes. Aims to reduce
duplication of effort, and allow quick development and
testing of new physics models and simulations

® A collection of examples and test cases

® Focused on flute-reduced plasma models in field-aligned
coordinate systems, but more general capabilities

IS hot:

® A single plasma model or simulation

® A general library of numerical methods for parallel
computing. Other tools like PETSc are available for that.

® Magic. Appropriate numerical schemes depend on the
problem, and must be chosen intelligently by the user

2 |25

Key features

® Finite difference initial value code in 3D

e Implicit (e.g. BDF, C-N) or explicit (e.g. RK4, Karniadakis)
time integration

® Coordinate system set in metric tensor components

® Handles complicated topology of X-point tokamak
geometry

® \\ritten in C++, quite modular design

e A growing community working to develop and exploit
simulations using fluid and gyro-fluid models

3 /25

Improvements since version 1.0

® Interfaces to PETSc (timestepping + linear solves) and
MUMPS (linear solves).
- Many sophisticated methods, more general problems

® Linear solvers for new classes of problems
— Fast parabolic solves along (equilibrium) field lines

® Preconditioning schemes - faster simulations

® New differencing methods, flux conservative and limiter
schemes, boundary conditions, ...

® Pre- and post-processing in more languages
- IDL, Python, Matlab, Mathematica, OCtave e

e 3D visualisation using Vislt and Mayavi

® Many updates, fixes, restructuring
configure scripts, manual, ...

Getting BOUT++

® \Workshop release version 2.0
https://github.com/boutproject/BOUT-2.0

® \/ersion control using git, a distributed system designed for
large collaborative projects (e.g. Linux kernel)

- See http://git-scm.com

® To download, run in terminal:

$ git clone
https://github.com/boutproject/BOUT-2.0.91t

® To later update to latest version, change to BOUT-2.0
directory and run $ git pull

5 /25

BOUT++ structure

® Separates generic methods from model-specific code

® Most of the code doesn't know or care about what a variable
represents, its normalisation etc. Only needs to know the
geometry and which operation to perform

Physics model

Evolving
variables

Normalisaition

Model
equations

~100 - 1000 lines

BOUT++ library

Time

Integration

Differencing

methods

Mesh
comms

Boundary
value solvers

Input /
Output

~30,000 lines

6 /25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

Src

examples

tools

® configure and make scripts
(see user manual, and Maxim's talk)

e README and COPYING

7 |25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual
user_manual
Src
developer_manual
examples :
coordinates
tools

User manual describes how to get started
with BOUT ++.

8 /25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual field Data handling
routines
Src fileio
invert « Memory allocation
examples and handling
mesh e Scalar and vector
flelds, and
tools solver operations on them
 |nitial and boundary
Sys n
conditions

9 /25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

field

Src

fileio

examples

invert

mesh

tools

solver

Data input and output

 Reading and writing
binary file formats
(pdb, netcdf, ...)

 |nterface for writing
scalar and vector
flelds

SYs

10 / 25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

field

Src

fileio

examples

invert

mesh

tools

solver

SYs

PDE solvers
for boundary-value
problems

« Common routines
for inverting
Laplacian type
equations

* |nterfaces to
PETSc, MUMPS, ...
for some problems

11 /25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

field

Src

fileio

examples

invert

mesh

tools

solver

SYs

Mesh

Distribution of grid

NOoINtS across
Nrocessors

| ocal < Global

Communications

Metric tensor

12 /25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

field

Src

fileio

examples

invert

mesh

tools

solver

Time integration

e EXxplicit and implicit
methods

e |nterface to external
solvers In
SUNDIALS and
PETSc

SYs

13 [/ 25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

field Miscellaneous
utilities
Src fileio
invert e Options get/set to
examples control behaviour
mesh e EXxception handling,
timing and
tools solver debugging aids
Svs « MPIl and PETSc
i start / stop
 Differencing methods

14 | 25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual fest suite Models and test
cases
Src conduction
interchange e Test suite uses
. A hon to run an
examples instability ™ (F:)r)lléci ct)orreuctnaesi
blob2d »| * Linear stability
tools examples
elm-pb
*| < Slab (2D/3D)
6Field- examples
simple &. ELM simulations

15 [/ 25

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual idllib » Pre- and post-
processing
Src pylib <
matlablib e “Collect” routines
to read output data
examples : _
Mathematica _ Or various
1lib languages
tools » Processing and
Tokamak visualisation
grids « Mesh generation

16 [/ 25

Example: Hasegawa-Wakatani

Field3D n, vort, phi; Objects represent scalar and
| vector fields over the mesh

Options *"options = Options::getRoot()->getSection("hw");
OPTION(options, alpha, 1.0);
OPTION(options, kappa, 0.1);

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

RHS function evaluation (called by solver)

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);

ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort),;

17 [25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()- >getSect10n("hw”),
OPTION(options, alpha, 1.0);
OPTION(options, kappa, 0.1);

Tree of options controlling
SOLVE_FOR2(n, vort); behaviour. Set in input file;

phiSolver = Laplacian::create();, [hw]
alpha = 0.4

RHS function evaluation (called by solver)

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);

ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort),;

18 [/ 25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()->getSection("hw");
OPTION(options, alpha, 1.0); *a\
OPTION(options, kappa, 0.1); \ Macros for common tasks:

options->get(alpha, “alpha”, 1.0);
SOLVE_FOR2(n, vort); - ~ options->get(kappa, “kappa”, 0.1);
phiSolver = Laplacian::create(); solver->add(n. “n”):
solver->add(vort, “vort”)

RHS function evaluation (called by solver)

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);

ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort);

19 [/ 25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()->getSection("hw");

OPTION(options, alpha, 1.0); . o .

OPTION(options, kappa, 0.1); Factory options set in input file:
[solver]

type = cvode
SOLVE_FOR2(n, vort); —

. : . . S . [-Lap-l-ace]
phiSolver \}ap1a01an..creatg?},type = i
(Can be passed an options object)

RHS function evaluation (called by solver)

phi # phiSolver->solve(§ort, phi);

mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);

ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort);

20 /25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()->getSection("hw");
OPTION(options, alpha, 1.0);

OPTION(options, kappa, 0.1);

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

RHS function evaluation (called by solver)

o Guard cell communication explicit to allow
phi = phiSolver->solve(vort, phi); optimisation (send...calculate ...wait)

ﬁmesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);

ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)

- Dvort*Delp4(vort);

Equations appear in easily readable form 21 [/ 25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()->getSection("hw");
OPTION(options, alpha, 1.0);

OPTION(options, kappa, 0.1);

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

RHS function evaluation (called by solver)

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi); Equations appear in easily readable form

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
- Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort);
Overloaded operators, not
template expressions currently 22 | 25

Example: Hasegawa-Wakatani

Field3D n, vort, phi;

Options *options = Options::getRoot()->getSection("hw");
OPTION(options, alpha, 1.0);

OPTION(options, kappa, 0.1);

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

RHS function evaluation (called by solver)

ohi = phiSolver->solve(vort, phi): [dd[;]erivative methods set in options e.q.
h-> ' hi);
mesh->communicate(n, vort, phi); first = C4 # 4th-order Central difference
ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) - kappa*DDZ(phi)
— Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi - n)
- Dvort*Delp4(vort); Boundary conditions in input file e.g
[n]
bndry_all = dirichlet 23 /25

BOUT++ component patterns

Most components now follow the same “factory” pattern

Options

Object

A header file defines the interface
include/invert_laplace.hxx

Common routines and factory in src:
src/invert/laplace/laplacefactory.cxx

Individual implementations in subdirectory
src/invert/laplace/impls/...

The factory is the only place where individual headers are
Included, so forces rest of the code to be independent.

See developer manual for more details 24 | 25

Using BOUT++ (conclusions)

e BOUT++ Is open source, under the LGPL license.

® Allows linking to proprietary code, but modifications to core
of BOUT++ come under LGPL.

® You are free to take and modify BOUT++ for any purpose

® Please contribute improvements and fixes back to the
community

® Use of BOUT++ and contributed components should be
acknowledged through co-authorship and/or citations

® One aim of this workshop is to establish a solid community
basis for collaboration

25 [25

